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Abstract - In this paper, we consider the routing and capacity 
assignment problem for virtual circuit networks where the objective is 
to minimize the maximum cnd-to-end packet delay. Compared with 
traditional aggregate type of performance measures, such as the aver- 
age packet delay, this performance measure is consistent with those of 
many new services and achieves better fairness among users. 

Two cases are considered. In  the first case, the capacity assign- 
ment is assumed to be given and the routing strategy is to be deter- 
mined. The problem is formulated as a nonlinear nonconvex mul- 
ticommodity network flow problem with integer routing decision vari- 
ables. A dual approach is proposed to calculatc primal feasible solu- 
tions. The proposed algorithm is computationally shown to uniformly 
outperform a greedy heuristic and a linear programming relaxation 
approach in conjunction with a rounding scheme. The algorithm also 
calculates legitimate lower bounds on the optimal objective function 
value, which are not easily attainable using the linear programming 
relaxation approach due to the nonconvex nature of the problem. When 
the network is heavily loaded, these lower bounds are significantly 
higher than those obtained by solving the routing problem of minimiz- 
ing the average end-to-end delay with continuous routing dccision vari- 
ables. We also propose another approach to calculating lower bounds 
by using a lower-bounding function to characterize the delay on each 
delay element. These bounds are shown to be tighter than those pro- 
vided by the dual approach when the network is lightly loaded. 

In the second case, we consider the joint routing and capacity 
assignment problem. The problem is formulated as a nonlinear noncon- 
vex mixed integer programming problem. We develop a two-phase 
algorithm where the routing and the capacity assignment decision vari- 
ables are optimized, respectively. A minimum-hop heuristic is used to 
calculate the routing assignment, and thcn a convex programming pro- 
cedure is devised to solve the capacity assignment problem. Experi- 
mental results of this heuristic and comparison with the results of the 
first case will be presented. 

1. Introduction 

To ensure reliable and high-quality network services, routing 
and capacity assignment policies should be carefully designed. Tradi- 
tional quasi-static routing algorithms attempt to optimize a certain 
aggrcgatc measure, e.g. to minimize the average end-to-end packet 
delay [ I ,  21. However, this kind of performance measures niny not be 
consistent with the scrvicc objectives and may result in fairness prob- 
lems. 

Sincc end-to-end performance is users' dircct perception about 
the service quality, scrvice objectives are typically specified on an 
end-to-end basis for many new services, e.g. Switched Multi-megabit 
Data Service (SMDS), Frame Rclay Service (FRS). Asynchronous 
Transfer Mode (ATM) and Advanced Intelligent Kctwork (AIN). 

Typical service performance measures for advanced services include 
end-to-end packet/cell delay and end-to-cnd packet/cell loss probabil- 
ity. As such, from scrvice providers' perspective, it is more appropri- 
ate to dcsign a routing and capacity assignment policy such that the 
end-to-end quality of service for each user is satisfied than a policy to 
optimize an aggregate performance measure, which in many cases may 
result in  good average performance but unacceptable performance for 
some users (fairness issues). 

In this paper, we focus on routing and capacity assignment algo- 
rithms for virtual circuit networks. In virtual circuit networks, traffic of 
each session is transmitted over exactly one path. This discrete nature 
makes the problem more difficult than the datagram routing and capa- 
city assignment problem where the routing decision variables are con- 
tinuous. Previous research on virtual circuit routing mostly considers 
the objective function of minimizing the average end-to-end packet 
delay [ 3 ,  1 ,  41. In this paper, for the first time, we consider the prob- 
lem of minimizing the maximum end-to-end packet delay for virtual 
circuit networks. We consider two cases. In the first case, the capacity 
assignment is considered to be fixed. The remaining routing problem 
is formulated as a nonlinear nonconvex multicommodity network flow 
problem with integer routing decision variables. The nonconvex pro- 
perty together with the discrete nature of the problem makes it chal- 
lenging in  developing efficient and effective algorithms. 

A novel application of the Lagrangean relaxation technique is 
applied to calculatc primal feasible solutions and lower bounds on the 
optimal objective function value. For comparison purposes, we also 
de\elop two other primal heuristics -- one based upon a greedy princi- 
ple and the other based upon linear programming relaxation in conjunc- 
tion with a rounding scheme. In  computational experiments, the pro- 
posed alzorithm is shown to outperform these two primal heuristics 
over a fu l l  range of loads in a test network. We also computationally 
show that the lower bounds calculated by the proposed dual approach 
are significantly higher than those obtained by solving the routing 
problem of minimizing the average end-to-end delay with continuous 
routing decision variables when the network is heavily loaded. We 
also propose another approach to calculating lower bounds by using a 
lower bounding function to characterize the delay on each network ele- 
ment. 'These bounds are shown to be tighter than those provided by the 
dual approach when the network is lightly loaded. 

We next consider the joint minimax routing and capacity assign- 
ment problem for virtual circuit networks. The problem is formulated 
as a mixed integer programming problem where routing and capacity 
assignment are both decision variables. A two-phase algorithm for the 
joint problem is proposed. In the first phase, only the routing decision 
variables are considered. A minimum-hop routing heuristic is adopted 
lor this part. Once the routing is determined, the remaining capacity 
assignment problem becomes a convex programming problem and can 
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be solved optimally. In the computational experiments, i t  is demon- 
strated that for a fixed total capacity, to consider the joint routing and 
capacity assignment problem would result in significant performance 
improvement than to consider the routing problem with an even capa- 
city assignment policy. 

The remainder of this paper is organized as follows. In section 
2, a mathematical formulation of the routing problem is presented. In 
section 3, a dual approach for the routing problem based upon 
Lagrangean relaxation is proposed. In section 4, two primal heuristics 
are proposed for comparison purposes. In section 5, the joint routing 
and capacity assignment problem is formulated and a two-phase algo- 
rithm is devised. Computational results arc reported in section 6. 

2. Routing Probmlem Formulation 

A virtual circuit communications network is modeled as a graph 
where the proces,sors are represented by nodes and the communication 
channels are represented by arcs. Let V = ( I ,  2, ...., N ]  be the set of 
nodes in the graph and let L denote the set of communication links in 
the network. Let W be the set of origin-destination (0-D) pairs (com- 
modities) in the network. For each 0-D pair w E W, the arrival of new 
traffic is modelcd as a Poisson process with rate y,,. (packetskc).  For 
0-D pair w, the overall traffic is transmitted over one path in the set 
P,, a given set of simple directed paths from the origin to the destina- 
tion OF 0 - D  pair w. For each link 1 E L, the capacity is C, packets/sec. 

For each O D  pair w E W ,  let x,, be 1 when path p E P ,  is 
used to transmit ithe packets for 0 - D  pair w and 0 otherwise. In a vir- 
tual circuit network, all of the packets in a session are transmitted over 
exactly one path from the origin to the destination. Thus 
x p e P , x , ,  = 1 .  For each path p and link 1 E L ,  let S,,, denote the 

indicator function which is one if link 1 is on path p and zero otherwise. 
Then, the aggregate flow over link I, denoted as g,, is 

PCP,, h’€ w 
c c x , Y w ~ / , / .  

I n  the network, there is a buffer for each outbound link. Using 
Kieinrock’s independence assumption [ 5 ] ,  the arrival of packets to each 
buffer is a Poisson process where the rate is the aggregate flow over the 
outbound link. I t  is assumed that the transmission time for each packet 
is exponentially distributed with mean C‘- ’ .  Thus, each buffer is 
modeled as an MIMII queue, as considered in [3, 1,4]. 

The prob1e:m of determining a path for each 0 - D  pair to minim- 
ize the maximum, end-to-end delay in a virtual circuit network is for- 
mulated as the following nonconvex nonlinear combinatorial optimiza- 
tion problem. 

subject to: 

C x , , = I  P W E W  
PC P,, 

x , , = O o r I  P ~ E P , , , w E  W.(1 .3)  

Constraint ( I .  1) requircs that the aggregate flow not exceed the 
capacity for each link. Constraints (1.2) and (1.3) require that all of the 
traffic for each 0 - D  pair be transmitted over exactly one path. From the 
above formulation, i t  is clear that (IP’) is a nonlinear multicommodity 
integral flow problem. In addition, by examining the Hessian of 

X,’ bp/ 
with respect to ( x i , ) ,  i t  can be shown that x It L c /?E P,, 

(IP’) is a nonconvex programming problem. 

An equivalent formulation of the above problem is given by (IP) 
below, which is more suitable for the application of the Lagrangean 
Relaxation method. We introduce two variables: y,,, for each 0 - D  pair 
w and each link 1 andf! for each link 1. yU./ is defined as ~ , , , p w x p S p l  

andf, can be interpreted as estimate of the aggregate link flow. As will 
be shown in the next section, the introduction of these auxiliary vari- 
ables facilitates the decomposition of the problem into independent and 
easily solvable subproblems in the Lagrangean relaxation. Extra con- 
straints associated with these variables (2.4 - 2.7) are added. 

ZIP = min S (IP) 

subject to: 

(2.1) 

x] ,  = O o r  1 

c X P 8 / , /  I y n /  

P p E P , ,  w E W (2.3) 

P w E w ,  1 E L (2.4) 

y , , , = O o r l  P W E  W , l E L  (2.5) 

/It P ,  

g , I f ,  P I E L  (2.6) 

O I f , I C /  P l E  L. (2.7) 

Constraints (2.4) and (2.6) should be equalities and the current 
form is a relaxation. However, it can be shown that at an optimal solu- 
tion, equality should hold. As will be seen in the next section, this 
relaxation makes the formulation better suited for the application of 
Lagrangean relaxation. 

3. Dual Algorithm for the Routing Problem 

The basic approach to the algorithm development is Lagrangean 
relaxation. We dualize constraints (2.l), (2.4) and (2.6) to obtain the 
following relaxation. (Note that the constraints are dualized in such a 
way that the corresponding multipliers are nonnegative.) 

Y h l  Z,(t, 11, U) = min [ S + r,$ ( E  ~ - S) + 
, , E  w / E L  c/ - f/ 

subject to: 

x,’ = 0 or 1 (3.2) 

y,,,  = 0 or 1 (3.3) 

0 s  f i s c ,  P 1 €  L. (3.4) 

tf p E P,, , w E 

V w E W ,  1 E L 

W 

We then add a redundant constraint: 

? < S < S  (3.5) 

where s is the maximum allowable end-to-end delay and 5 is the 
D 

minimum possible end-to-end delay. A possible value of S is ~ 

max, C, 
where D is the diameter of the network when all 0 - D  pairs have 
nonzero demand. 

We can solve problem (LR) by solving three independent 
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subproblems: 

m i n S ( 1  - Et , , )  
n € w 

(SUB 1) 

subject to (3.5), 

min c c c ( V d  + L L , Y M )  "/,6,/ (SUB2) 
,It w />E P,, 

subject to (3.1) and (3.2), and 

/ e  L 

c twy,,, 
I(.€ w 

min E[------ - v,,, ~~~1 - ~ l / f , l  (SUB31 
/ E L  c/ - f/ w t w  

subject to (3.3) and (3.4). 

, ,EWtI , ,  2 I ,  
S = s; otherwise, S = 5. Problem (SUB2) can he further decomposed 
into 1 WI independent shortest path problems with nonnegative arc 
weights and can be easily solved. Problem (SUB3), though looks com- 
plicated due to the coupling of {yw,] and U/), can be solved analyti- 
cally. We  first further decompose (SUB3) into I L /  independent prob- 
lems: For each link 1 E L: 

The solution to (SUB1) is straightforward: if 

subject to: 0 I ,f/ I C, and y, , ,  = 0 or 1 P w E W. 

For different values off , ,  the value of y,,) for minimum objec- 
tive function, dcnoted as y , , , * ( f / ) ,  may be different. As an example, 
consider the case thatf, = 0. The objective function is minimized by 

assigning y , , / * ( O )  to 1 if (- - v , , .~ )  5 0 and to 0 otherwise. We 

define a set of break points of f, as those points where 

tn 

c/ 
1 i t  

(- - v , , / )  = 0 for each w. These break points are sorted and 

denoted as f/', f i 2 ,  ...., f i " .  Note that there are at most 1 WI break 
points. We observe that whenf ! '  5 f l  < f,'+', the value o f j , , / * ( f / )  
remains constant for  all w E W. Within the above interval, j,,,*(f/) is 

1 if (F - v,,,) < 0 and is 0 otherwise. Therefore, within an 

interval, v/',f/'+'), the objective is only a function of f, and the 
minimum point within the interval can be found analytically. By exa- 
mining at most 1 W 1 +1 intervals, we can then find the global minimum 
point by comparing those local minimum points. 

When examining an interval, we first determine y > , , * ( f / ' )  within 
the interval for each w. We denote t t , y k , l * ( f / ' )  as a ,  and 

v u , y h l * ( f l ' )  as b,. Note that a i  and b ,  are non-negative. Within 

the interval, the objective function can then be expressed as: 

b ,  - U ,  f,. A typical curve of the objective 

function vs. f i  within the intervalf,' 5 f i  I f,"' is shown in Fig. 1 .  
The local minimum point is either at the boundary point,f,' o r f , ' + ' ,  or 

c /  - f/ 

t M' 

c/ - f i '  

I* E w 

W E  w 

a/ 
Z w h i - /  = ____ - c/ - .f/ 

at pointf,' = c / 4 2  , ( U /  f 0). 
U /  

For any ( t ,  v ,  U )  2 0, by using the weak Lagrangean duality 
theorem, the optimal objective function value of (LR), Z ,  ( I ,  v, U ) ,  is a 
lower bound on Z,p. We want to determine the greatest lower bound 
by: 

Z ,  = max Z,(t ,  v, U )  (D) 
r . i  .U 2 0 

Fig. 1: A typical curve of the objective function of (SUB3-1) vs. f, 
within the intervalf,' I f i  I fii+' 

Fig. 2: A typical graph of the objective function of (SUB3-1) vs.f, 

We use a popular method, the subgradient method, for solving the dual 
problem (D). Let a ( 1  Wl + I LI . I WI + I LI)  vector b be a subgradient 
of Z ,  ( t , v , u ) .  In iteration k of the subgradient optimization procedure, 
the multiplier vector m' = ( t , , , k ,  v,,, ,~, u I k )  is updated by 

"'I - - ,k + a k b L  

The step size a' is determined by 

where Z f p  is an objective function value for a heuristic solution (upper 
bound on Z,p) and 6 is a constant, 0 < 6 5 2. 

I t  is observed in the computational experiments that the lower 
bounds calculated by the proposed dual approach is not tight when the 
network load is light. To calculate tighter lower bounds for lightly 
loaded networks, the following lower-bounding procedure is devised. 
One 0 - D  pair w E W is considered at a time where the traffic from the 
other 0 - D  pairs is ignored. Denote such a minimax routing problem for 
H/ by (LBw). The optimal objective function value for each of such 
problems is clearly a lower bound on the optimal objective function 
value of (IP), Z,p. An optimal solution to (LBw) is to route y, over a 
shortest path where the arc weight for link 1 is l/(C/ - y,,,). Solve 
each (LBw) and report the highest one among those lower bounds 
obtained. 

To calculate primal feasible solutions, we principally use the 
solution to each (LR). If the routing assignment calculated in solving 
an (LR) satisfies the capacity constraints, then a primal feasible solu- 
tion is found. The best primal feasible solution is then reported. 

4. Primal Heuristics for the Routing Problem 

parison purposes. 
In this section, we propose two other primal heuristics for com- 

Primal Heuristic I :  The first heuristic is based upon linear- 
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programming relaxation in conjunction with a rounding scheme. More 
precisely, the integrality constraints are first relaxed. Then the penalty 
function method and a Frank-Wolfe-like method are used to solved the 
relaxed problem. A simple routing scheme is next applied to find 
integer ~ o l ~ t i o n ~ .  

Primal Heuristic 2: The second primal algorithm is a greedy 
heuristic. The 0 - D  pairs are first sorted with respect to an attribute. 
Then at each iteration of the algorithm, minimize the maximum end- 
to-end delay of all the 0 - D  pairs considered so far by including one 
more 0-D pair from the ordered list. This process is repeated until all 
0 - D  pairs are considered. 

Link 
capacity 

5. The Joint Routing and Capacity Assignment Problem 

In this section, the joint routing and capacity assignment prob- 
lem for virtual circuit networks is considered., A solution procedure is 
then proposed. 

Consider the following formulation 

Upper bounds (msec.) Best known 
dual I greedy 1 F-W lowerbound* 

subject to: 

e./ = c c ,  (4.4) 
I t L  I t  L 

where c I  is the capacity assignment variable for link 1 and C ,  is 
the total capacity of the network. (We use the same notation as in the 
previous sections.) 

Compared with (IP), (R&CA) has more variables and similar 
discrete and nonconvex properties. It is also observed that (R&CA) 
with the routing decision variables fixed is a convex programming 
problem. We then propose a two-phase algorithm to solve (R&CA) 
where in the first phase a minimum-hop heuristic routing is used and in 
the second phase the remaining capacity assignment problem is 
optimally solved Iby applying convex programming techniques. 

Algorithm R&CA 

Step 1: For every node IZ E V,  calculate a shortest path spanning tree 
using Dijkstra’s algorithm where the arc weight associated with 
each link i:j set to 1.  

Step 2: Route the traffic demand for each 0 - D  pair over the path calcu- 

Step 3: Calculate the aggregate flow for each link I ,  denoted by h,. 

Step 4: Solve the .Following convex programming problem. 

lated in Step 1. 

ZL, = min S 

subject to: 

I S  P W E W  
xp 6,l c :E--- 

/ E L  /”: P,, c /  - h l  

/ I /  = c c x p y K , s / , /  I c /  v 1 E L (5.2) 

cx/,=1 P W E W  (5.3) 

/ E P .  H‘E w 

P E  p,. 

where rip's are fixed (determined in Step 1) and only c / ’ s  are con- 
sidered to be decision variables. 

The algorithm routes the traffic for each 0 - D  pair over a 
minimum-hop path. In addition, for each root the union of selected 
paths to the other nodes in  the networks form a spanning tree. 
Dijkstra’s algorithm is used to calculate a shortest path spanning tree 
for each root. Given the routing calculated in Steps 1 & 2, an optimal 
capacity assignment policy to achieve the minimum longest end-to-end 
delay is then found in Step 4. 

6. Computational Experiments 

The minimax end-to-end delay routing algorithm described in 
section 3 and the joint algorithm described in section 5 were coded in C 
and run on a workstation. The network topology used in the experi- 
ments [ l ,  3, 41 is shown in Figure 3. The maximum number of itera- 
tions allowed for the proposed dual routing algorithm is 1000. It is 
assumed that the traffic demand of each 0 - D  pair in the network is one 
packet per second. For each 0 - D  pair, at most three candidate paths 
are considered. It is reported in [ 11 and [4] that the optimal objective 
function value will not be significantly improved when the number of 
candidate paths for each 0 - D  pair is greater than 3. We use randomly 
generated arc weights and Dijkstra’s shortest path algorithm to generate 
the candidate paths. 

Fig. 3: 26-node 60-link OCT net 

860.3 569.8 
514.6 31 1.5 1 :i 1 168.4 1 188.6 ‘ 1  183.5 ’ 1  8 6 . 9 1  

81.7 85.1 86.0 53.7 
200 54.1 55.8 5.5.8 40.2 

*: the best lower bounds obtained by the three approaches proposed in 
this paper 

Three sets of computational experiments are performed. In the 
first set of experiments, we compare the  proposed routing algorithm 
with the two primal heuristics described in section 4. The attribute used 
in the greedy heuristic to sort the 0 - D  pairs is a uniformly distributed 
random variable with a range between 0 and 1. Table 1 summarizes 
the results. The first column is the link capacity. The second column 
reports the upper bounds generated by the proposed dual routing algo- 
rithm. The third column shows the upper bounds generated by the 
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Table 2 - Comparison of lower bounds obtained by various algorithms 

t: lower bounds generated by solving the problem of minimizing the 
average packet delay 
3:  lower bounds generated by considering one 0 - D  pair at a time where 
the traffic from the other 0 - D  pairs is ignored 
*: the lowest values of columns 2, 3 and 4 in Table 1 

Link 
capacity 

65 
70 

100 
150 
200 

greedy heuristic, where infinity indicates that the heuristic fails to find 
a feasible solution. The fourth column is the upper bounds generated 
by the other primal heuristic based upon linear programming relaxa- 
tion, the penalty function method, a Frank-Wolfe-like approach and a 
simple rounding scheme. The last column presents the best known 
lower bounds, which are obtained from Table 2. From an inspection of 
Table 1, it is shown that the proposed dual algorithm consistently cal- 
culates the best results compared with the two primal heuristics. 
Another observation from Table 1 is that the two primal heuristics fail 
to calculate primal feasible solutions when the network is heavily 
loaded. 

In the second set of experiments, we compare the lower bounds 
generated by various methods. Table 2 summarizes the results. The 
first column is the link capacity. The second column reports the lower 
bounds generated by the proposed dual algorithm. The third column 
shows the lower bounds generated by solving the virtual circuit routing 
problem where the objective function is to minimize the average packet 
delay. It is clear that the optimal objective function value of this 
minimizing-average-delay virtual circuit routing problem is a lower 
bound on the optimal objective function value of the minimizing- 
maximum-delay virtual circuit routing problem. The algorithm pro- 
posed in [4] is applied and the lower bounds calculated are reported. 
The fourth column is the lower bounds generated by considering one 
0 - D  pair at a time where the traffic from the  other 0-D pairs is ignored 
as described in  section 3. The last column presents the best known 
upper bounds, which are obtained from Table 1. From an inspection of 
Table 2, i t  is shown that the proposed dual routing algorithm calculates 
tighter lower hounds than the minimizing-average-delay approach 
when the network is heavily loaded. Another observation from Table 2 
is that the lower bounds obtained by the “one-at-a-time” lower- 
hounding procedure is tighter than the other two approaches when the 
network is lightly loaded. 

In the third set of experiments, Algorithm (R&CA) described in 
section 5 is tested. The purpose is to show the efficiency of the algo- 
rithm and the effect of considering the joint  problem rather than  con- 
sidering the routing problem with a fixcd even capacity allocation pol- 
icy. Table 3 summarizes the results. The first column shows the total 
link capacity. The second column reports the results obtained by 
applying Algorithm (R&CA). The third and fourth columns report the 
best known lower and upper bounds of the worst end-to-end delay 
assuming even link capacity assignment. Consider the first case in 
Table 3. Assuming even l ink capacity assignment (65 for each link), 
the optimal objcctive function value is between 569.8 and 860.3. The 
result corresponding to the joint routing and capacity assignment 

Lower bounds (msec.) Best known j 
dual inin-avgt one-at-a-times upper bound-’ 

569.8 384.9 125.0 860.3 
311.5 248.3 115.9 514.6 
86.9 86.7 80.8 168.4 
42.4 42.5 53.1 81.7 
28.1 28.2 40.2 54.1 

problem by applying Algorithm (R&CA) is 373.0. Thus the perfor- 
mance improvement is between 35% and 57%. Note that when the net- 
work is lightly loaded, i t  is intuitive that the performance improvement 
achieved by considering the joint problem should be limited. 

Table 3 - Results of Algorithm (R&CA) for the joint problem 
Total worst end-to-end delay (msec.) 
link 

373.0 569.8 860.3 
296.8 311.5 5 14.6 

7. Summary 

I n  this paper, we, for the first time, consider the problem of 
minimizing the maximum end-to-end delay for virtual circuit networks. 
Compared with traditional aggregate types of performance measures, 
e.g. average packet delay, this performance measure is consistent with 
the service objectives of many new services and achieves better fair- 
ness among users. 

We first consider the routing problem assuming a fixed capacity 
assignment. We formulate the problem as a nonconvex nonlinear mui- 
ticommodity integral flow problem. The nonconvex and discrete pro- 
perty makes the problem very difficult. We take an optimization-based 
approach by applying the Lagrangean relaxation technique in the algo- 
rithm development. Compared with two other primal heuristics, the 
proposed algorithm achieves better performance over different loads in 
the test network. 

We further consider the joint routing and capacity assignment 
problem where both the link capacities and routing assignments are 
considered to be decision variables. Although this generalized problem 
is also a nonconvex nonlinear combinatorial optimization problem, we 
develop an efficient and effective two-phase heuristic. In the first 
phase, the routing assignments are determined by applying the 
Dijkstra’s algorithm. In the second phase, a convex programming prob- 
lem is solved to determine an optimal link capacity allocation. It is 
observed from the computational experiments that when the traffic 
requirement distribution is uniform and the total capacity is given, then 
by considering the routing and the capacity assignment decision vari- 
ables jointly rather than using the even capacity assignment strategy 
and considering the routing decision variables alone, up to 57% 
improvement on t h e  maximum end-to-end delay is achieved. 
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